A Uniform Identification Badge for Medical and Emergency Workers: Managing a Regional Personal Identification Verification Program

Rasa Silenas
Texas A&M Health Science Center

Eric Epley
Southwest Texas Regional Advisory Council for Trauma

Alexander McLeod
University of Texas at San Antonio

Abstract
South Central Texas emergency planners organized a personal identity verification project for emergency and health care workers. This paper describes the development and administrative challenges in designing and implementing a PIV system across multiple organizations in a 22-county region.

Keywords: personal identity verification, emergency worker identification, regional ID system, regional identity verification, PIV system

Introduction
Managing personnel identification and access control for workers who are not their employees is a significant security issue for hospitals, and carrying a plethora of identification badges is a nuisance for health care and emergency personnel who work in multiple hospitals. This paper describes one region’s solution.

After the terrorist attacks of September 11, 2001, a group of medical and Emergency Medical Services (EMS) executives in the greater San Antonio area organized a voluntary committee to improve regional preparedness. One of the workgroups under this committee is the EMS/Hospital Disaster Group (EHDG), which focused on hospital and pre-hospital aspects of medical disaster response. EHDG aligned itself with the Southwest Texas Regional Advisory Council for Trauma (STRAC), which has a legislative mandate to organize trauma response on a regional level, as its disaster committee. Additionally, the region’s hospital leadership designated EHDG as the planning group for Health Resources and Services Administration (HRSA) Bioterrorism funds, allowing federal funding to support the preparedness plans of EHDG.

One of the first problems that EHDG identified was that the hospitals and Fire/EMS agencies within the 22-county STRAC region did not have a uniform method for
identifying physicians and Fire/EMS personnel and disaster volunteer medical workers. This created three primary problems for regional emergency preparedness.

1. Difficulty securing hospitals and other facilities.
2. Inability to identify and authenticate affiliated medical professionals.
3. Lack of adequate identification and tracking of personnel at routine Fire Department and EMS responses as well as disaster incidents.

Process

To address these problems, EHDG tasked its Hospital Security workgroup to develop the concept of a uniform identification (ID) badge for the region. The Bexar County Medical Society (BCMS), embraced this project as addressing a number of its own needs, including assisting hospitals’ compliance with the requirement of the Joint Commission for Accreditation of Healthcare Organizations (JCAHO) for hospital personnel to wear identification. Other early supporters included all STRAC EMS agencies, the San Antonio Fire Department (SAFD), the Bexar County Fire Marshal’s Office (BCFMO) and the Alamo Area Fire Chiefs Association. Approximately $150,000 was allocated to the project in the 2003 fiscal year.

Initial Steps

Risk assessment: The EHDG requested briefings from Emergency Management personnel, the Federal Bureau of Investigation (FBI), and others. Inadequate hospital and disaster site security was high among the concerns identified in these risk discussions, specifically the inability to:

1. Rapidly and effectively lock down a facility, while remaining functional for patient care
2. Easily identify the various non-hospital employees that routinely enter and exit hospitals (Physicians, Fire/EMS personnel, and during disasters, volunteer medical workers)
3. Track non-traditional personnel at a disaster incident (self-presenting physicians, disaster medical volunteers, Fire/EMS personnel from other jurisdictions, etc). Review of local and other disaster after-action reports reveals that such personnel have created significant problems, ranging from non-licensed personnel practicing medicine to the inability to know who was left in a particular area when the location was evacuated
4. Use the Personnel Accountability Reporting (PAR) system for all personnel at an incident site
5. Instantly know the certification level of other medical personnel and the current level at which their agencies’ local policies allow them to practice.

The threat of terrorism has amplified these concerns, especially the ability to rapidly secure a hospital and remain in a lock-down mode for an extended time. Since Jan ‘03, the Department of Homeland Security (DHS) has put the nation at Threat Level Orange twice, for weeks or months at a time. Security alerts have referenced the potential for
terrorists to obtain Fire/EMS uniforms and ambulances to gain access to secure areas. The possibility for physician impersonation exists as well, with possible penetration into hospitals, including sensitive hospital areas such as Intensive Care Units or pharmacies. Hospitals have not been able to implement higher security measures without significant hindrances to daily operations.

Access Control assessment

EHDG conducted a survey of hospital access control systems in the area. They found four main technologies in use, from multiple vendors:

1. Varieties of magnetic stripes on the card, which require a swipe of the card through a card reader, similar to a credit card swipe
2. Proximity Radio Frequency Identification (RFID) cards or other devices that emit a small signal that wirelessly connects the card to the reader
3. One-dimensional bar codes, which require a bar code scanner, similar to the type used at the checkout counter of the grocery store
4. Keypads that require personnel to remember a specific numerical code to enter the door. Most ED keypads in the city were programmed to variations of a single, simple code, creating a vulnerability.

Some facilities used a mixture of these technologies.

Initial Goals and Assumptions

The uniform ID badge had to meet a complex set of requirement from badge wearers, hospitals, Fire/EMS and Emergency Management agencies. Physicians and Fire/EMS personnel, as prospective badge holders, had similar desires. Their ideal ID badge would:

1. Allow entry to areas where the cardholder has approved access
2. Restrict movement into areas where the cardholder does not have approved access
3. Provide easy visual identification, at least with picture, first/last name, clinical certification/license, specialty/rank and home agency if applicable
4. Provide additional data directly from the card to a reading device (such as a laptop or handheld card reader) that would give incident command or security personnel additional details not normally desired on the visible portion of the card. This might include additional qualifications and other information, such as medical history, blood type, or smallpox vaccination status
5. Have a simple and quick process for requesting, obtaining and replacing the card while maintaining the ability to verify the badge-holder’s credentials
6. Ensure security of the ID badges and validate the data associated with them
7. Reduce the number of badges and parking cards an individual needs to carry
Hospital, Fire/EMS and Emergency Management agency desires, as badge system users, included the following capabilities:

1. Visual/manual identification of personnel with an easily recognized ID badge that is consistently worn
2. Ability to scan the ID badge for additional data about the badge-holder, such as clinical skills, specialty knowledge, and medical information such as immunization status
3. Ability to implement restrictive hospital access control during heightened security without a significant impact on daily operations
4. Hospital compliance with Joint Commission for accreditation of Healthcare Organizations (JCAHO) requirements with respect to physician identification, while also providing an easy method for physicians to comply with these requirements
5. Ability for Fire/EMS and Emergency Management agencies to track and maintain accountability for personnel on an emergency scene to ensure their safety when safety conditions deteriorate
6. Tracking, with time stamp information, of badge-holders who have entered specific areas of a hospital or other access-controlled facility
7. Ability to track personnel who were possibly exposed to a contagious/infectious agent or hazardous substance
8. Ability to immediately lock out an individual whose employment with an agency or affiliation with a hospital is terminated

In the initial stages, badging was to begin with practitioners who regularly work at hospitals but are not hospital employees: physicians and EMS. Hospitals needed to agree to the concept of uniform badging for these groups and to modify their access control systems to accommodate input from the uniform ID system allowing the uniform ID card to serve as the card-holder’s method for entering the building or authorized areas such as parking facilities. The hospitals were to retain full control of who has permission to enter specific areas of their facilities. SAFD would participate by badging the majority of area EMS personnel.

Badge Design

A mixture of the technologies was selected to accommodate all of the above needs.

The badge is a 3.3 inch tall x 2.1 inch wide polyvinyl chloride (PVC) card that has information printed on both sides. The visual layout of the front of the badge was based on a design in use by the Austin/Travis County EMS System and includes badge-holder demographic information such as a digital photograph, first and last name, specialty and agency affiliation. Collaboration between the participating agencies allowed the creation of a standardized color scheme which, when printed on the badge, indicates medical certification, title/rank and access type. Images of the agency’s logo and medical certification patch further assist with identification of the badge-holders credentials. The
various populations (physician vs. Fire/EMS) have different colored layouts on the front of the badge but include the same basic information for visual identification.

The back of the badge contains an industry standard three track magnetic stripe which is encoded during production to contain access control information. The addition of a PDF-417 2-D bar code allowed interoperability with FireTrax, a proprietary system from Salamander Technologies, which facilitates personnel accountability at emergency scenes. A one-dimensional bar code (along with the magnetic stripe) is used to interface with the access control systems and achieved compatibility across multiple legacy systems already in daily use at participating facilities. The current version of the badge does not implement the use of RFID or proximity due to limited local demand and cost factors, however, the uniform ID system can accommodate these technologies when their use becomes more widespread. The addition of a second one-dimensional bar code provided agencies with an option to integrate an employee ID number into the badge for equipment tracking or timekeeping applications. The badge is shown in Figure 1.

Figure 1. Uniform ID Badge

ID System Design

Once the overall look and functionality of the badge was formalized, the next step was to design and implement a system in which the badges could be easily created, managed and
produced. BCMS partnered with a local technology firm, World Net, to create the system, because this company offered knowledge and experience in both Internet application development and emergency response.

The application was designed to provide a user-friendly interface to multiple concurrent users located throughout the 22 county region. The basic functionality included the ability to create, edit, review, and print badges along with extensive reporting capability. Because each agency possesses a unique set of access control and identification requirements, a matrix of access levels was designed to allow users to perform tasks commensurate with the role assigned by each agency. Each agency governed permissions and controlled ID cards for their employees. In order to avoid the unauthorized production of badges on the system, specific permission is granted to agencies with badge printers. On the back end, a database was employed to manage the data. The system design included the means necessary to communicate with the access control system at each hospital in order to distribute access information for the badge-holders.

The enrollment process uses a Secure Socket Layer (SSL) encrypted Web-based application housed on a central server. Each agency authenticates and inputs badge-holder information into a database. A variety of fields meet the needs of all users, however each agency is only able to access data fields specific to their agency or group. Each agency authorized on the system enters basic identification information, rank, clinical licensure and certifications, along with other fields, both mandatory and optional. This interface and the current database fields are shown in Figure 2.

Hospital administration of the system includes authorizing physicians access to hospital facilities by “affiliating” individual badge-holders in the database, authorizing badges to be printed and/or activated, as well as printing and issuing the badge. Authorized staff members at each hospital may log onto the server and affiliate badge-holders with the specific hospital but are unable to affiliate or disaffiliate badge-holders with other hospitals. The access control system at each hospital communicates with the uniform badge server at least once every 24 hours to retrieve the unique access ID numbers of affiliated badge-holders. The hospital’s access control system then grants the affiliated badge-holders access to an area or group of areas as determined by the individual hospital. For instance, many hospitals granted access into parking facilities in addition to the ED doors to entice badge-holders to always carry the card. Since the hospital’s access control system determines what areas the badge-holder may enter, individual hospitals may allow access to specific areas within the facility.
Figure 2. Web interface and database fields
Fire/EMS agency administration of the system is similar with the exception of the affiliation process. All agency personnel that require access to the ED during normal operation are automatically affiliated with every hospital on the system, since they previously had access to the EDs as a group through then-current access control methods. Individual hospitals have the ability to grant access to Fire and EMS members into additional areas of the hospital on a case by case basis.

Badging workstations have a computer and monitor, an automated camera system, a barcode/magnetic stripe reader, and a badge printer. Stations have been deployed to several hospitals and other agencies throughout the city and surrounding areas to simplify the logistics of issuing badges. Emergency Management agencies or hospitals receiving out-of-area personnel, volunteers or visitors, may issue badges to those personnel on arrival and program their access as appropriate.

Use of the system by a badge-holder is straightforward. Color-coded signs were placed at locations where the badge may be used, indicating which type of access control system controls the entrance. Magnetic stripe readers display a blue sign depicting a badge-holder swiping the card long edge down in the reader. A matching blue stripe running along the long edge of the card next to the magnetic stripe provided additional assistance. Barcode readers display a red sign depicting a badge-holder swiping the badge short edge down in the reader. A matching red stripe running along the short edge of the card on top of the barcode allows for easy identification. Labeling of the card readers is shown in Figure 3.

Figure 3. Labels on card readers
Infrastructure Management

The information technology at the core of the system is maintained with standard best practices. The database and web-based application undergo daily backup with off-site rotation of storage media so that historical information is preserved. For security, all activity on the system is logged. Penetration attempts and suspicious activities are flagged for administrator investigation. Firewalls and intrusion detection systems serve as the front line of defense, with regular security evaluations allowing for the elimination of possible threats before they are exploited.

Future applications

At the time of this writing, the entire system was in place in the San Antonio area: all region hospitals had access control systems, the application and database was operational, and badges had been issued to 2600 physicians and approximately 2000 EMS personnel. The system had just “gone live” with minimal irregularities. As funds become available, hospitals will be able to extend the uniform badge to their own employees in nursing and support functions.

The Alamo Area Council of Governments has also adopted the uniform ID badge for first response agencies throughout its 12 county area (this area partially overlaps TSA-P).

The City of San Antonio is further developing the badge to be part of a two-factor biometric authentication capability and incorporating its use in the SAFFD Incident Command System. The University of Texas at San Antonio has received a $100K grant to demonstrate the use of biometric authentication and incorporation of the badge system with SAFD information systems. This system will be compatible with FIPS 201 standards in the event the City of San Antonio adopts smart card badging.

Deployment of the badge to Fire/EMS agencies in the rest of the 22-counties of TSA-P will proceed as funds become available.

Finally, the San Antonio Uniform ID Badge program is being integrated with a parallel effort by the Department of Homeland Security (DHS). DHS has created a First Responder Authentication Credential (FRAC), currently being implemented for First Responders, Response Support, and Critical Government personnel in the National Capital Area. The FRAC has substantial physical and system similarities to the STRAC/BCMS uniform ID; however, the FRAC is a smart card embedded with an integrated circuit chip (ICC) capable of Public Key enabling (PKE) data. It reflects the Federal Information Processing Standard 201 (FIPS 201) (NIST 2006), issued by the National Institute of Standards and Technology (NIST) as directed by Homeland Security Presidential Directive 12 (HSPD 12) (Bush 2004). This standard specifies the architecture and technical requirements for a common identification standard for the Personal Identity Verification (PIV) of Federal Employees and Contractors. FIPS 201 defines a process to issue secure and reliable forms of identification based on sound
criteria for personal identity proofing, registration, and issuance. FIPS 201 specifies use of identity credentials with ICCs that resist identity fraud, tampering, counterfeiting, and terrorist exploitation. These identity credentials can be rapidly authenticated electronically and are to be issued only by providers whose reliability has been established by an official accreditation process.

The identity proofing requirements remain the responsibility of the local jurisdictions but must meet a basic level of identity assurance in accordance with the Federal Bridge Certificate Authority (FBCA) Levels of Assurance. Additionally, the FRAC supports the integration of baseline critical skill sets (attributes) as defined in the National Response Plan’s (NRP) National Incident Management System’s (NIMS) 15 Emergency Support Functions (ESFs) (DHS 2004), or the National Infrastructure Protection Plan’s (NIPP) 17 Sectors (DHS 2006). Most of the San Antonio badge database contains information that would be classified as “attributes” on the FRAC.

Development of the phase two STRAC/BCMS uniform ID badge will follow the FIPS 201 identity credential issuance, architecture, topology, and technical requirements. Implementation of a FIPS 201 technically-compliant credential, the First Responder Authentication Credential (FRAC), for First Responders, Response Support, or Critical Government personnel will enable interoperability not only with local jurisdictions, but also the Texas National Guard, United States Coast Guard, and all federal emergency response officials in compliance with HSPD 12. The STRAC/BCMS team will coordinate with DHS/NCRC to ensure future interoperability / compatibility through participation in a near future pandemic exercise/demonstration.

Discussion

This uniform badging project was developed in a 22-county region that has one of the most complex, inclusive, voluntary, trans-jurisdictional and trans-organizational medical disaster planning systems in the nation. This level of cooperation, at the highest levels of the organizations involved, is fragile and requires constant attention and transparency. However, broadly welcome and successful projects such as the uniform ID are also a powerful tool for building regional collaborations. A key factor in our success was the emphasis on consensus-driven decisions, which ensured buy-in from all participants.

To create a uniform ID badge system in another area, we believe the following steps would be appropriate.

1. Define the user community. What professional groups will use the system initially? Will the system be purely medical, or will the responder community use it as well? Will it reside in one jurisdiction or across a region?
2. Define requirements. The requirements we designed are a good starting point for discussion; other user communities may add or subtract according to local needs.
3. Study existing access control infrastructure and identify gaps. Do all users have entry control systems? Do these cover all doors and gates that need to be covered at each facility? What types of systems are used? What access mechanisms (bar codes, magnetic strips, RFID chips, etc) need to be included on a uniform badge for present and future compatibility across the area?

4. Identify who will “own” the system—who will be responsible for funding, administration and maintenance? Also, identify a project manager for organizing and installing the system. The “owner” and project manager may be different people. In our area, the STRAC/EHDG Hospital Security Committee is the “owner” but the Bexar County Medical Society (BCMS) did much of the start-up project management, in close collaboration with the STRAC: a local vendor developed the database and Web-based application

5. Confirm agreement of all users to commit the necessary resources to conform to the system’s physical and administrative requirements and to use the system. This must be done at senior administrative levels since the project will most likely involve multiple departments in the hospitals, i.e. security, physician services, human resources, facility/plant maintenance, etc.

6. Establish start-up funding. The STRAC/EHDG provided funding from HRSA bioterrorism hospital preparedness grants, which will be less available in the future.

7. Define database fields.

8. Acquire and install access control systems where needed

9. Acquire server, database software and badge printers

10. Test and refine any deficiencies noted in the system

11. Train agency-level badge administrators

12. Deploy system

Much work remains in determining appropriate data fields for individual qualifications. There has been much enthusiasm for using such a platform for carrying information on which to base emergency credentials for out-of-area volunteer responders, whether physicians or others. Caution is in order. The term “credentialing” has a different meaning for physicians than for other professional groups. First responders use the word simply to indicate that they are who and what their badge says they are, such as a Basic EMT or a Paramedic, according to a national standard for what those words mean. Physician credentials are granted by individual hospitals through a detailed process dictated by both JCAHO and local policies, based on the physician’s specialty training, currency and performance history. The credentials are specific down to individual procedures, such as specific surgical operations, and care of specific conditions. They are highly sensitive information, especially if a physician’s credentials were limited or revoked for alleged poor performance. Furthermore, information as detailed as a physician’s credentials may not be necessary or appropriate for inclusion in the uniform ID badge database. What information should be included is currently being discussed.
Even for non-physicians, the validity of training information and other certifications is currently on the honor system. There is no mechanism for verification at the system level that an individual has completed specific training or that their training is current.

However, in its present state of development, the uniform ID badge has already demonstrated that it meets a large and complex set of requirements from a large and complex set of users in a uniformly satisfying way. Such systems will improve safety, security and accountability for hospitals and emergency responders wherever they are adopted.

References